FIRST
 STEPS
 IN
 SCHEDULE

DAVID ALLEN

Contents

Foreword

Schedule Compiling - the work of a Schedule Compiler. In this context a Schedule compiler compiles working Timetables for the Underground railways. what is a Jorking Timetable? - It is essentially a base document, similar to an ordinary timetable but with additional information and used by all staff concerned with pperating the railway. It is used either to extract specific information for their needs or as a general reference book.
A good working Timetable will provide the correct level of service in an efficient and workable manner. It will contain sufficient (but not excessive) information to be clearly understood; it will be well presented and above all it will be accurate.

Some people refer in conversation to the 'art' of schedule compiling. Well it may not be an art but it is without doubt a very specialised skill which takes time to acquire. 0ld hands will tell you that they never stop learning and, of course, the criteria are continually changing. A Compiler's life is not a bed of foses - he may spend weeks compiling a timetable which never operates. on the other hand, he will find the work fascinating and often rewarding.

Each line is individual - it has its own particular problems and special features; the timetable will need to reflect these peculiarities. There cannot, fherefore, be one blanket instruction book which can adequately cover all features of the Lines.

The following notes set out to provide a trainee Compiler with a little background information as a foundation upon which, with suitable instruction and help he can build up his own store of knowledge and expertise.

A word of advice - never rush things - ask questions if you are uncertain and check, check, check - everything!

Finally, I must record my thanks to Geoff Bassett who gave me so much helpful dvice and assistance in the writing of these notes.

David Allen
December 1981

First Steps In Schedule Compiling

What a Compiler Must Know

A Compiler cannot put pencil to paper (Note that W.T.T.'s are always compiled in pencil - much use will be made of a rubber before a respectable timetable emerges!) unless he has knowledge of the three sets of basic information around which the timetable will be uritten:
These are: (a) The geography of the line
(b) TIME ALLOWANCE; and the
(c) SERVICE FREQUENCIES required to be operated.
(a) Geography

Firstly, the Compiler must learn the geography of the line. He should study a track diagram and, if possible, visit the railway. He should make a mental note of the general layout of the line - where the branches are (if any), the length and relative importance of these branches and whether there are any single track sections.
reversing facilities
These are provided at three types of location:-
i) Termini - The end of the line (i.e. the last point where passenger trains operate) is known as the terminus. ht a terminus trains will generally be reversed at the platforms.
(ii) Intermediate Reversing Points - A point where passenger trains are reversed other than at the end of the line. At these places, the usual method of reversal is by means of a siding(s) beyond the station although sometimes 'bay' platforms are provided.
iii) Emergency Reversing Points - Reversing facilities at these points will usually be limited to a trailing crossover. The Compiler will not normally be concerned with these locations.
most lines are divided into sections based on the normal reversing points. The section over which the maximum level of service operates is known as the trunk section'.

JUNCTIONS

A junction is a point where tracks diverge. On the simplest lines they occu where there are links to sidings or other lines. Much more important are the junctions where passenger routes diverge and these occur on the bigger lines where there are branches.

The divergence in itself is not a problem the difficulty arises where a track on which trains move in one direction crosses the track for the npposing direction. Sometimes this point of confliction is removed by of a bridge-this is known as a iflying junction'.

The junction illustrated here is a 'flat junction'; the point of confliction presents a real hazard to the Compiler and it needs his special attention.

stabling facilities
Although a Compiler will expect to have this information before commencing the timetable; it is not needed in the early stages of compilation.

I have therefore delayed the explanation until Chapter IV where provision of Rolling Stock is fully covered.
(b) time allowances

running times

Start to stop running times for each section of the line are calculated by the Rolling Stock Engineer based on:

The performance characteristics of the rolling stock.
The length of the section.
Gradients.
Curvature.
Permanent Speed Restrictions.
Station stop times are then added and a small 'make-up' or recovery allowance is also included

Off-Peak (Basic) running times are tabulated in the front of every working Timetable. Extra time (i.e. longer station stop allowance) is given on busy sections during peak periods.

Layover times

Layover time is the length of time taken for a train to reverse at a terminal station, i.e. from the time of arrival in one direction, to the time of departure in the opposite direction.

Minimum layouer times are agreed for each terminal based on the method of reversal (i.e. at a platform or via a siding), the length of the train and for a siding reversal, the running time to and from the siding. Normally compilers will allow an 'optimum' layover which is a feu minutes longer than the minimum.

N Example of basic running times quoted in the front pages of workin rimetables

All lines will have points where trains running in one direction will conflict with trains moving in the opposite direction. This occurs at all reversal points and whenever there are flat junctions. It is vital that the Compiler is aware of the confliction areas and knows the clearance times to be allowed at each location.
The illustration overleaf shows how clearance times are calculated at a typical two platform terminal.
headways
A 'headway' may be described as the distance in time between trains running on the same track.

The Compiler must know what the minimum signalled headway is for each section of the line. On the Underground, a trunk section will usually be signalled for 90 second headways (i.e. trains can run $1 \frac{1}{2}$ minutes apart) and outer sections for 2 minute headways.

Normally, the Compiler will aim to keep scheduled headways wider than signalled headuays whenever he can do so.
(c) Service frequency

The final set of information a Compiler must have will be the level of service which is required to be operated over each section of the line This is referred to as the service remit. The service frequency will vary for different days of the week and different times of the day.

A remit will often be quoted as the number of trains to be run over each section per hour - "trains per hour" (t.p.h.). This can easily be converted to service frequency, i.e.:

4	t.p.h.	-		minutes	frequency
6	t.p.h.	-	10	"	"
8	t.p.h.	-	$7 \frac{1}{2}$	"	"
12	t.p.h.	-	5	"	"
20	t.p.h.	-	3	"	"
30	t.p.h.	-	2	"	"

London Transport Working Timetables do not allow for timings of less than $\frac{1}{2}$ minute. Sometimes the remit calls for a frequency to a finer fraction than this, e.g.

$$
16 \text { t.p.h. - } 3 \frac{3}{4} \text { minutes frequency }
$$

In this case the timetable must compromise and show a varying frequency to produce the correct number of trains per hour. A $3^{\frac{3}{4}}$ minute service would therefore be compiled as $3 \frac{1}{2}$ and 4 minute intervals alternately.

Time lapse
ime lapse
(seconds)

40 Train A clears crossover

43 Points changed

46 Signal 3 clears

50 Train C moves off

Train C arrives at platform

93 Points changed

B8

($\frac{1}{2}$ minute allowed).

The Standard

A Working Timetable can generally be divided into several periods of time. Within each 'period' trains run at constant intervals - to a pattern, or cycle, which is repeated for as long as it is required. Ideally the cycle time will be divisible into 60 minutes (e.g. $10,12,15,20$ or 30 minutes) which allows the service to repeat each hour. This is known as a 'clock face' interval service.
The compilation of these patterns is the first task to be undertaken when commencing work on a new timetable - they are generally displayed for a span of one hour unless the cycle time is longer than this, when the complete cycle is shown. These patterns are called 'standards' and each of these 'periods' mentioned above requires its own standard.

The quality of the timetable will very much depend on the quality of its standard patterns. Thus it is most important that the compiler takes time at this stage to be absolutely certain that he has produced the best possible standard - he that any othe that he has allowed correct time allowances (outlined in chapter 1) and that he has the best possible utilization of trains.

SELF CONTAINED SERVICES
On lines which have branches it is normal practice to design the standard so that trains continue to run to and fro on the same branch throughout the period of the standard.

On the above diagram for example, one set of trains will run between A and C whilst another set will work between B and C .

This method is known as 'self contained services' and is much favoured by the Traffic Controllers since it ensures that the effect of delays to the service is kept to a minimum. For instance, a delay occuring at station b will effect trains operating to and from that station but trains working between A and C will continue to run, largely unaffected; thus the Controller will have to attend to only half the total service.
the galley sheet
Working Timetables and their standards are normally compiled on special preprinted sheets, known as 'Galley Sheets'. The list of stations down the lefthand side is called the 'station name bank'. Sometimes a special layout is required and blank galley sheets are available for this purpose.

The sample galley sheet shown herein uses what is known as a folded format style of presentation. In a folded format timetable, both directions of service are contained in one galley. This style is only possible when there is a common reversing point for all trains at one end of the line. The more usual method is to use a directional format where the two directions of service are shown on separate galleys.
a 'folded format' style galley sheet for the jubilee line

compiling the standard - where do we start?
There may well be outside factors (e.g. connections or interworking with other lines) which will dictate the times of trains at certain locations but if this is not the case, the simplest answer is; you can start where you like. Select a the service in one direction only hich can re regarded as 'fixed'. In the pposite direction times can then be jusgled around until a suitable pattern is found but service in

The aim is to provide optimum layovers at all points. An optimum layover is essentially the most suitable layover for the service being operated. At one extreme it will be the minimum layover (when the service frequency is so great that the minimum is also the maximum workable layover which can be allowed). Otherwise it will range up to double the minimum. Where service intervals are wide, longer layovers may be unavoidable. Avoid making layovers so generous as to incur the unnecessary use of extra trains.

Check all clearances (not forgetting any flat junctions) - allow more than the minimum clearance time if you can. Let us take a simple railway by way of illustration:
NDRTH END

Running Times

Clearance Times
Minimum Layovers

Service Frequency

North End - Midland Midland - Southway

North End and Southway North End and Southway Midland

North End - Midland Midland - Southway

15 minutes (each direction)

6 minutes
10 minutes
5 minutes

As recomended we will start by setting out our service pattern for one direction which we will call southbound:-

North End	00		10		20		30		40		50	
Midland	15	20	25	30	35	40	45	50	55	00	05	10
Southway	3712	421 $\frac{1}{2}$	$47 \frac{1}{2}$	521 $\frac{1}{2}$	$57 \frac{1}{2}$	021	071 $\frac{1}{2}$	$12^{\frac{1}{2}}$	172	22 $\frac{1}{2}$	27 $\frac{1}{2}$	$32 \frac{1}{2}$

That's one direction done alreadyl
Looking at the northbound, we must pitch the timings to produce suitable layovers and clearances at each point. Since all trains reverse at Southway it is a good idea to look there first. If we start by applying the minimum layover to the first train, it would depart at $41 \frac{1}{2}$ - this gives insufficient clearance time before the second train arrives at $42 \frac{1}{2}$. Therefore the departure of the first train must be delayed until after the second train has arrived. Because there are only two platforms available, it must leave at least $1 \frac{1}{2}$ minutes before the third train is due. Thus, in this case there is a "window" of 4 minutes during which time the first train must leave (i.e. 43 to 46 inclusive). The range of this "window" will vary accoording to the level of service being reversed.

Suppose we start by timing the first train to leave at the earliest time (43); we can then set down a northbound service from Southway to the furthest point where all trains run (i.e. Midland). Therefore, for this particular pattern of service, the stretch of line between Southuay and Midland becomes the 'trunk section'。

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline North End Midland Southway \& \begin{tabular}{l}
00 \\
15 \\
37 \\
\hline 15
\end{tabular} \& 20 \& \begin{tabular}{l}
10 \\
25 \\
47 \\
\hline 18
\end{tabular} \& 30
\(52 \frac{1}{2}\) \& 20
35
57

$\frac{1}{2}$ \& 40 \& 30
45
$07 \frac{1}{2}$ \& 50 \& 40
55
$17 \frac{1}{2}$ \& 00 \& 50
05
$27 \frac{1}{2}$ \& 10
$32 \frac{1}{2}$

\hline | Southway |
| :--- |
| Midland | \& 43

$05 \frac{1}{2}$ \& 48
10
$10 \frac{1}{2}$ \& 53 \& ${ }^{58}$ \& 03
$25 \frac{1}{2}$ \& \& \& \& \& \& \&

\hline
\end{tabular}

(Note that only a few northbound trains have been inserted at this stage - they may need to be altered later.)

Now we must decide which trains to reverse at Midland.
Looking at the first train, it would have to depart again going south at for 20, having reversed via the siding beyond the station. The layover would be too short for it to depart at 10 and if it were held back for the 20 departure, the siding would not be clear for the following terminating train arriving at $15 \frac{1}{2}$. The second train ($10 \frac{1}{2}$ arrive) is much better - it would have a layover of $9 \frac{1}{2}$ minutes, departing southbound at 20 and leaving the siding clear for the next reverser arriving at $20 \frac{1}{2}$. This is very satisfactory and we can now project the remaining trains to North End.

North End Midland Southway	00 15 37 	20	10 25 $47 \frac{1}{2}$	30	20 35 57	40	30 45 $07 \frac{1}{2}$	50	40 55 $17 \frac{1}{2}$	20 22	50 05 27	
Southway	43	48	53	58	03							
Midland	$05 \frac{1}{2}$	$10^{\frac{1}{2}}$	151 $\frac{1}{2}$	$20 \frac{1}{2}$	25 $\frac{1}{2}$							
North End	$20 \frac{1}{2}$		301		$40 \frac{1}{2}$							

Now we are in trouble!
The $20 \frac{1}{2}$ arrival at North End clashes with the 20 departure. The arrival time must be at least 1 minute later to provide the minimum $1^{\frac{1}{2}}$ minute clearance.

So, can we retime the whole northbound service 1 minute later? we know already that this can be done at Southuay - what about Midland? No problem, the layove is simply reduced to $8 \frac{1}{2}$ minutes. (There are no junctions to worry about but if there were they should be checked for clearance at this time.)

So let us assume that all northbound times are one minute later and look at the layovers and clearance time at all three points.

	Layover	Clearance
Southway	$6 \frac{1}{2}$	$3 \frac{1}{2}$
Midland	$8 \frac{1}{2}$	-
North End	$8 \frac{1}{2}$	$1 \frac{1}{2}$

The service is workable, the layovers are good but only the minimum clearance time is allowed at North End. Another $\frac{1}{2}$ minute delay to the northoound service would give optimum allowances for all layovers and clearances.

So we should retime the northbound service $1 \frac{1}{2}$ minutes later than was originally put down. We can then complete our standard hour by inserting the to form times (i.e. the time of departure in the opposite direction).

North End	00		10		20		30		40		50	
Midland	15	20	25	30	35	40	45	50	55	00	05	10
Southway	371 $\frac{1}{2}$	42 ${ }^{\frac{1}{2}}$	471 $\frac{1}{2}$	521 $\frac{1}{2}$	571 $\frac{1}{2}$	021	071		$17 \frac{1}{2}$	22 $\frac{1}{2}$	271 $\frac{1}{2}$	32 $\frac{1}{2}$
Southway	44 $\frac{1}{2}$	$49 \frac{1}{2}$	$54 \frac{1}{2}$	$59 \frac{1}{2}$	04 $\frac{1}{2}$	$09 \frac{1}{2}$	1412	$19 \frac{1}{2}$	24 $\frac{1}{2}$	$29 \frac{1}{2}$	34 $\frac{1}{2}$	391
Midland	07	12	17	22	27	32	37	42	47	52	57	02
North End	22		32		42		52		02		12	
To Form	30	20	40	30	50	40	00	50	10	00	20	10

This standard has been compiled using a 'folded format' style of galley. It could equally well have been uritten out using directional galleys:
viz
Southbound

North End	00		10		20		30		40		50	
Midland	15	20	25	30	35	40	45	50	55	00	05	10
Southway	371 $\frac{1}{2}$	42 ${ }^{\frac{1}{2}}$	471 $\frac{1}{2}$	52 $\frac{1}{2}$	572	021 ${ }^{\frac{1}{2}}$	072	1212	172 $\frac{1}{2}$	22 $\frac{1}{2}$	$27 \frac{1}{2}$	32 $\frac{1}{2}$
o Form	44 $\frac{1}{2}$	4912	54 $\frac{1}{2}$	$59 \frac{1}{2}$	04 $\frac{1}{2}$	0912	14i $\frac{1}{2}$	1919	24 ${ }^{\frac{1}{2}}$	$29 \frac{1}{2}$	341	391 $\frac{1}{2}$

Morthbound

Southway	44 $\frac{1}{2}$	493	54 $\frac{1}{2}$	$59 \frac{1}{2}$	042	091 $\frac{1}{2}$	141 $\frac{1}{2}$	$19 \frac{1}{2}$	24 $\frac{1}{2}$	$29 \frac{1}{2}$	$34 \frac{1}{2}$	391 $\frac{1}{2}$
Midland	07	12	17	22	27	32	37	42	47	52	57	02
North End	22		32		42		52		02		12	
To Form	30	20	40	30	50	40	00	50	10	00	20	10

ADVANCE OR DELAY?
Sometimes it is just not possible to compile a satisfactory standard using the basic running time throughout. In other words a train, or trains must be delayed en route in order to give satisfactory working over a flat junction or at a terminal.

For illustration we will return to the stage where we first set down northbound times to North End and found we had clearance problems:

North End	00		10		20		30		40		50	
Midland	15	20	25	30	35	40	45	50	55	00	05	10
Southway	37 $\frac{1}{2}$	42 $\frac{1}{2}$	471 $\frac{1}{2}$	$52 \frac{1}{2}$	571 $\frac{1}{2}$	021 ${ }^{\frac{1}{2}}$	071	12 ${ }^{\frac{1}{2}}$	1721	$22 \frac{1}{2}$	271 $\frac{1}{2}$	32 $\frac{1}{2}$
Southway	43	48	53	58	03							
Midland	05 $\frac{1}{2}$	10난	151 $\frac{1}{2}$	$20 \frac{1}{2}$	251 $\frac{1}{2}$							
North End	$20 \frac{1}{2}$		301		$40 \frac{1}{2}$							

Now let us assume that the timings at Southways are fixed and cannot be altered at all. We now have two options open to us:

1 to DELAY northbound trains at Midland so that they arrive at North End one minute later.
2 to ADVANCE southbound trains to run one minute earlier from North End to Midlando
With both these options, trains must STAND for one minute at Midland. This is achieved by use of a 'stand code' (in this case a small letter 'b' signifying a one minute hesitation) which is placed in front of the 'minute' figures. A list of these codes is shown in the front pages of all warking Timetables.

Stands cause delay to passengers; they should not be used unnecessarily. when they are used and there is a choice of position or direction, they should be placed where they are likely to delay as few passengers as possible.

Check that the stand does not cause the minimum headway to be violated.
Our 'exercise' standard can be completed using the advance or bend technique.
Thus if the heaviest traffic flow is Northbound; the advance method is used viz

North End Midland Southway	$\begin{gathered} 59 \\ 615 \\ 37 \frac{1}{2} \end{gathered}$	20	-09	30 52	19 b35 57	40 $02 \frac{1}{2}$	29 045 $07 \frac{1}{2}$	50	39 b55 $177^{\frac{1}{2}}$	200	49 005 $27 \frac{1}{2}$	10 $32 \frac{1}{2}$
Southway	43	48	53	58	03	08	13	18	23	28	33	38
Midland	$05 \frac{1}{2}$	$10 \frac{1}{2}$	151 $\frac{1}{2}$	$20 \frac{1}{2}$	$25 \frac{1}{2}$	$30 \frac{1}{2}$	351	$40 \frac{1}{2}$	451 $\frac{1}{2}$	$50 \frac{1}{2}$	551 $\frac{1}{2}$	$00 \frac{1}{2}$
North End	$20 \frac{1}{2}$		$30 \frac{1}{2}$		4012		$50 \frac{1}{2}$		$00 \frac{1}{2}$		10눌	
To Form	29	20	39	30	49	40	59	50	09	00	19	10

If, on the other hand, the traffic flow is Southbound, we would use the delay method viz.

North End	00		10		20		30		40		50	
Midland	15	20	25	30	35	40	45	50	55	00	05	10
Southway	3712	42 $\frac{1}{2}$	471 $\frac{1}{2}$	$52 \frac{1}{2}$	571	02 ${ }^{\frac{1}{2}}$	071	121 $\frac{1}{2}$	$17 \frac{1}{2}$	22 $\frac{1}{2}$	271 $\frac{1}{2}$	321 $\frac{1}{2}$
Southway	43	48	53	58	03	08	13	18	23	28	33	38
Midland	6061	$10 \frac{1}{2}$	b16 ${ }^{\frac{1}{2}}$	$20 \frac{1}{2}$	b26 $\frac{1}{2}$	$30 \frac{1}{2}$	b36 ${ }^{\frac{1}{2}}$	403	646 ${ }^{\frac{1}{2}}$	$50 \frac{1}{2}$	b56 $\frac{1}{2}$	001
North End	$21 \frac{1}{2}$		$31 \frac{1}{2}$		$41 \frac{1}{2}$		$51 \frac{1}{2}$		$01 \frac{1}{2}$		112 $\frac{1}{2}$	
To Form	30	20	40	30	50	40	00	50	10	00	20	10

Remember that a stand increases journey time for the passenger. It is always better to adjust layover times if you can.

PEAK STANDARDS - MAXIMUM TERMINAL THROUGHPUT
Sometimes, especially on a long line, the peak period will not last long enough to utilize a complete standard. However, it is usually worthwhile to produce a standard for reference purposes.

On lines where the trunk section ends at a terminus (as,at Elephant \& Castle) it may not be possible to reverse the required frequency of service unless the terminal throughput is increased in some way.

At a platform terminus, the most frequent service which can reqularly be reversed there (i.e. the maximum throughput) can generally be calculated by use of the following formula.

```
Layover Time + Platform Empty Time
= Maximum Service Frequency
Number of Platforms
```

For example; at a 2 platform terminal with a platform empty time of $1 \frac{1}{2}$ minutes and a minimum layover of 4 minutes, the formula will read:

$$
\frac{4+1 \frac{1}{2}}{2}=2^{\frac{3}{4}}
$$

Therefore, rounded up to the nearest $\frac{1}{2}$ minute, the maximum service frequency would be 3 minutes.

The throughput of a terminal can be increased by reducing the layover time belou crews

An additional crew is used for each platform at a terminus where stepping-back to take place (e.g. at a 2 platform terminal, two additional crews are required to operate stepping-back). This crew will be deployed on the platform ready to take over the train as soon as it arrives. The crew of the arriving train will leave their train and 'change ends' on the platform ready to join the next train at that platform. This process is repeated for as long as stepping-back is required. In this way the minimum layover time can be reduced to $2 \frac{1}{2}$ minutes and the terminal throughput formula would now read:
$2 \frac{1}{2}$ (minimum layover) $+1 \frac{1}{2}$ (Platform empty time)

$$
2 \text { (platforms) }
$$

So, the best service which could operate, at peak times through this example terminal would be 2 minutes.

A special symbol ' ∇ ' is used in the timetable to indicate that stepping-back is to take place.

HOW MANY TRAINS?
When a standard is completed it is a good plan to calculate the number of train required to work that standard. Sometimes, particularly for research projects this information is vital in order to evaluate the 'cost' of the service being considered.

A standard will normally contain a number of self-contained service patterns and each train will work continuously on one of these patterns. We must identify the patterns and calculate the cycle time for trains on each pattern.

The above illustration indicates patterns on a folded format timetable. There are two patterns - one simple and one complex. The simple pattern provides the service between Coombe and Downs. Trains on this pattern work only to and from these points. The cycle time for this simple pattern will be the total time taken for a train to complete one round trip - including layovers. The second more complex pattern concerns the service between Abercorn, Brompton and Downs.

Trains from Abercorn to Downs return to Brompton, thence back to Downs before completing the cycle by working to Abercorn. In this case the cycle time will be completing the cycle by working to Abercorn. In this case the cycle time will be departure from Abercorn.

For each pattern, calculate the cycle time - then find the number of trains required to work the pattern by dividing the cycle time (in minutes) by the interval between trains on that pattern.

The formula for this calculation is:

$$
\begin{aligned}
& \text { Cycle time (in minutes) } \\
& \text { Cycle interval (in minutes) }
\end{aligned}=\text { Number of trains }
$$

Do this calculation for each pattern and the sum of the results will be the total number of trains required to work the standard.

The process will be clarified if we put some times on the illustration.

Abercorn	T^{00}				T^{30}				7^{-00}
Brompton	15		30		45		00		15
Coombe	21	$T^{28 \frac{1}{2}}$		$T^{43 \frac{1}{2}}$		$T^{58 \frac{1}{2}}$		$T^{13 \frac{1}{2}}$	
Downs	-30	$-37 \frac{1}{2}$		$-52 \frac{1}{2}$	-80	-072	-15	$-22 \frac{1}{2}$	-30
Douns	-35	$42 \frac{1}{2}$	50	$-57 \frac{1}{2}$	-05	$-12 \frac{1}{2}$	20	$-27 \frac{1}{2}$	35
Coombe	44	$\underline{515}^{\frac{1}{2}}$	59	$1_{06 \frac{1}{2}}$	14	$1_{21 \frac{1}{2}}$	29	$\underline{-361 ~}^{1}$	44
Brompton	\perp_{50}		05		120		35		\perp_{50}
Abercorn			1_{20}				L_{50}		
To Form	00	$58 \frac{1}{2}$	30	131	30	$28 \frac{1}{2}$	00	$43 \frac{1}{2}$	00

First, the trains working between Coombe and Downs. Take any departure from Coombe - say the $43 \frac{1}{2}$. This train returns to Coombe and is ready to depart on its next trip at $13 \frac{1}{2}$ (30 minutes later). Thus the cycle time for the simple pattern is 30 minutes. The interval between trains on this cycle is 15 minutes. So the formula will read:-

$$
\frac{30 \text { (minutes) }}{15 \text { (minutes) }}=2 \text { trains required }
$$

For the second cycle, take the train departing Abercorn at 00 , follow it through its cycle and it will depart Abercorn next at 00 (120 minutes later). In this case the interval between trains on the cycle is 30 minutes

$$
\frac{120 \text { (minute cycle) }}{30 \text { (minute interval) }}=4 \text { trains required }
$$

So the whole standard service will require 6 trains.

The Train Service

first and last passenger trains
It is important to understand what is meant by First and Last trains. Briefly, a first train will be the first passenger train to serve part of the line - mayb only one station. Likewise, a last train will be the last passenger service t part of the line. Thus a large line will tend to have several first trains and several last trains.

All first trains and all last trains have been carefully timed to provid connections with other lines and sometimes B.R. services and buses as well Station duty rosters will have been compiled to suit these times. It must b understood therefore that the compiler must not alter times of first and las trains without special authority.

NOTE: First and Last trains - will not necessarily be the first and las movements on a section of a line. They will often be preceded or followed by empty trains or staff trains (these will be explained later on).
the passenger service
The first task is to set down on our galley sheets the full passenger service w are required to provide.

Taking the same simple railway that we used for standard compilation, let us imagine that we have given the following remit:

North End - Midland Midland - Southway

Before 12.00	6 t.p.h.	12 t.p.h.
$12.00-18.00$	8 t.p.h.	16 t.p.h.
After 18.00	4 t.p.h.	8 t.p.h.

This can easily be converted to service frequency, thus:-
12.00-18.00
10 mins.
After 18.00
$7 \frac{1}{2}$ mins.
15 mins.
${ }_{3 \frac{3}{4}}\left(\begin{array}{c}5 \frac{1}{2}-4 \\ \text { mins. }\end{array}\right.$

Standards will have been compiled for each of the three service levels and the can readily be expanded to cover the periods when they are required to operate However, they remain three unconnected services which have to be welded smoothly together. This is achieved by introducing a short period between the standards where the service is gradually altered from the old pattern to the new. This is known as the transition period. The length of the transition period will depend on the degree of change in the service levels but it will generally be around 15 to 30 minutes. Similarly, a standard pattern cannot start with a bang immediately after the 'fixed' first trains or be cut off at last trains - thus transition periods will be required to link the standards to first and last trains.

Qur sample timetable can therefore be divided into a number of clear periods which are best displayed in a diagrammatic form:-

Time (hours)
$T=$ Transition periods

When changing from one standard to another it is always policy to allow the more frequent standard to operate for its full period and the transition time is allowed to 'eat into' the period of the lesser standard. Note that the time quoted in the remit for a change in service level should normally be taken at the point where the passenger traffic is heaviest - this is usually in the Central area.
Ensure that no interval in the transition period is wider than the less frequent standard. (It is particularly important to check this on branches where the wider intervals can make a smooth change of standards rather than tricky.)
Compilation of the timetable can now proceed taking one direction at a time in a similar manner to compiling a standard. At this stage, there is no need to form trains up unless the line has a trunk section terminal (e.g. Elephant \& Castle on the Bakerloo Line) where trains must be formed up as the service is compiled.

Continue until the passenger service is set down for the complete day.
staff trains
The next stage is for staff trains to be added - like first and last trains they are rarely altered and should be copied from the existing timetable.

Staff trains are part of an integrated network of staff facilities which includes staff buses and staff taxis as well as staff trains. All are linked to staff booking on or booking off times and the Compiler must not alter thair times without seeking further advice.

In a working timetable all trains afe passenger unless shown otherwise so all staff trains should have the word 'staff' entered on the notes line.

When all staff trains have been entered, the embryo timetable will contain every train which is needed to provide the service and it is ready to be 'formed up'.

orming up the service

Sometimes the process of forming up the service is combined with the starting and stabling procedure (explained in the next chapter). More frequently a particular line will require the service to be formed up in a particular order. The new號 timetable.

Generally, each terminal is taken, one at a time. Form arriving trains onto suitable departures (note that staff trains can form passenger trains and vice versa) and tick the top of the column of each departure as it is formed. Allow ersa) and tick the top of the sidings than you have available!

During transition periods the rate of trains arriving will not match the rate of departures; if the service frequency is being increased there will be a number of departures which cannot be matched by arrivals - these will be identified by their columns remaining unticked. Conversely, as the service is reduced there ill be arrivals which are not wanted for return trips - there will be no time indicated in their 'to form' space. Later these trains will have to be worked to or from a depot, so allow sufficient space at your terminals, for these trains to reverse.

This is the first reference we have made ta depot, so we will leave our timetable for the moment and discuss this new subject more fully.

Rolling Stock

providing trains for the service

On each line there are a number of places where trains are stabled when they are not required for service. These locations fall into three categories:-
(a) Depots - Usually fairly large. Some covered accommodation will be provided where the Rolling Stock Engineer's staff can examine and service the trains. here will also be siding roads, under cover or in the open, where trains not requiring attention are stabled.
(b) Sidings - These are roads, usually in the open, where trains are stabled away from the running lines. Only the minimum of safety checks and cleaning will take place at these points.
(c) Outstabling Points - A term used when trains are stabled away from normal Depot and Siding locations. Outstabling points can be at platforms or on normal reversing sidings. They are used on lines where Depot and siding capacity is short and are generally only suitable for overnight stabling and are regarded as undesirable.

Each stabling point has a nominated number of trains which are required for service. In the case of Depots this number is normally less than the actual service. In the case of Depots this number is normally less than the actual
holding of trains at that Depot (to allow for trains being serviced or repaired by the Engineers).

As with cars (automobile varietyl) trains need to be thoroughly examined and serviced at stipulated intervals. Since a large number of trains are stabled at locations other than Depots (i.e. in categories (b) and (c)) where there are no servicing facilities, provision must be made to get these trains to a depot eventually. This could be arranged by simplytransfering trains by special trips from one point to another.

A much batter method is to design the timetable to achieve this. This is called 'rotation of stock' which simply means that the timetable provides for some of the trains starting fron each siding location to stable later in the day at a Depot and vice versa.

Some stabling locations will have a very limited capacity; often only sufficient to start some of the trains needed at a local reversing point, thus a certain amount of surplus journeys will be necessary to move trains to the point where they are required for service. Avoid running these journeys very early in the morning or late at night and never run before or after first and last trains or staff trains, without authority.
extra information the compiler needs
In Chapter I we learnt what information we needed to compile the standards and to set down the basic timetable. Now we need to know all about our stabling facilities, as follows:-
(a) The location of each stabling point on the line and into which of the three The location of each stabling point on the line and into which of t
categories each falls (i.e. Depot, Sidings and Out-Stabling points).
(b) The track layout at each location - in particular how the stabling point is connected to the running lines.
c) The number of trains available for service at each location
d) The running time between each stabling point and the nearest timing point on the running lines.
back to the timetable - getting trains started
he timetable as it has been compiled so far will indicate a number of trains required to start at each reversing point.

In many cases there will be a nearby stabling point from which to take trains but ometimes there will be insufficient trains stabled there to meet our requirements. If the nearest stabling location is remote or there are not enough trains available locally, additional trips will be necessary to bring trains to the terminal where they are needed. These additional journeys will run as passenger trains, additional to the basic service, unless they are outside the traffic day (i.e. earlier than first or later than last passenger trains) when they must run empty.

Sometimes this process can produce a rather untidy situation whereby the timetable includes a number of abutting short journeys. To explain this further we will refer again to our simple railway.
Let us assume that there is a Depot at Midland:-

This Depot has to supply all trains required to enter service at Midland and at North End. Those for North End must run as additional trips from Midland.

Now, the remit we have been using for our sample timetable provides for half the service to terminate at Midland. Referring back to Chapter III we can see that there will be a point in the timetable when the northbound service at midland and North End is working to the first standard whilst the southbound service has reached the second standard viz:-

Southbound					
North End	$11.37 \frac{1}{2}$		11.45		$11.52 \frac{1}{2}$
Midland	$11.52 \frac{1}{2}$	$11.56 \frac{1}{2}$	12.00	12.04	$12.07 \frac{1}{2}$
Southway	12.15	12.19	$12.22 \frac{1}{2}$	$12.26 \frac{1}{2}$	12.30
Northbound					
Southway	$10.54 \frac{1}{2}$	10.59 ${ }^{\frac{1}{2}}$	$11.04 \frac{1}{2}$		
Midland	11.17	11.22	11.27		
North End	11.32		11.42		
To Form	$11.37 \frac{1}{2}$	11.34	$11.52 \frac{1}{2}$		

The service has been formed up and the trains which are required to start will remain unticked at the top of the column.

An additional train is required to run from Midland to North End to form the 11.45 departure:-

| Northbound | | | |
| :--- | :--- | :--- | ---: | :--- |
| | | | Start |
| Notes | | | 11.21 |

Note that we have written in the time the train leaves the Depot and put the word 'start' on the notes line - this is always inserted when a train starts.
Sometimes the Depot is included in the station name bank and our timetable could equally well incorporate this as shown in the final galley lower down.

Now consider the situation at Midland, northbound. A train from Southway arrives at 11.22 and terminates. Two minutes later another train departs for North End having started from the Depot. This means that through passengers have been forced to change trains quite unnecessarily. This is overcome quite simply, as follows:-

Extend the 11.22 train to North End and reverse the following starting train at Midland. This small adjustment to the timetable incurrs no additional costs at all but gives the passenger a better deal.

To summarise then, make it a policy to avoid running two short trips when they could equally well be combined into one long journey.

We must now adjust our timetable accordingly:

Northbound

Notes	Start Ety			
Southway	$10.54 \frac{1}{2}$	$10.59 \frac{1}{2}$	11.21	$11.04 \frac{1}{2}$
Midland Depot	-	-	-	
Midland	11.17	11.22	11.24	11.27
North End	11.32	11.37		11.42
To Form	$11.37 \frac{1}{2}$	11.45	11.34	$11.52 \frac{1}{2}$

A newfeature has now been included, i.e. the note 'Ety' (short for empty) on the notes line. This is inserted whenever a complete trip runs empty. (Remember that all trains shown are assumed to be passenger unless they are indicated otherwise.)

As each train gets formed up, remember to tick the top of the column.
When starting up trains, each terminal point should be tackled in turn but they should be tackled in a certain order to avoid too much adjustment later on. In the illustration used above, North End should be completed before working on Midland since most if not all the trains required to form unticked trips in the opposite direction at North End can be found by extending Midland reversers.

Generally, terminals which do not have nearby stabling accommodation are tackled first, then locations with a very limited supply of 'local trains' and finally points near the larger depots. Remember to use locally stabled trains for the early morning starts. Keep a note of the number of trains you have started from each point - don't use more trains than are available!

stabling trains

Stabling is very much a reversal of the start up procedures with important exceptions.

On a Monday to Friday timetable most of the trains stabled after the morning peak will be required to be placed in a Depot where they can receive maintainance.

Evening stabling should be tackled in reverse order. Late night trains should be stabled first using local stabling points as far as possible (this avoids running unnecessary additional mileage late at night). This done you will knou the capacity left at each stabling point and you can proceed with the early evening trains.
As each train is stabled, the word 'Stop' is written on the 'to form' line at the foot of the column.
When all trains have been stabled a good check through the timetable should be made. Firstly, check that every columnis ticked or contains the note 'start'. secondly, check that the 'to form' line shows a time, or the word 'stop' for every column.
depot working
A Depot Working is simply a list showing, in time order, all trains which start and finish at each depot.

A rough Depot working should be prepared in stages as you complete each section of your timetable viz:-
(a) The morning start-up.
(b) The mid-day stabling (after the morning peak).
(c) Afternoon starts for the evening peak.
(d) The night finish.
(e) The evening stabling (after the evening peak).

When you have completed stage (e), each location should balance (i.e. the number
 there).
Stage (f) - the addition of train numbers will be done later - so leave room for them!
A stage by stage example of a Depot Working preparation is illustrated overleaf.
depot working - stage by stage illustration
(a) First, the morning start up

Train No.	Start	Train No.	Finish	Train No.	Start	Train No.	Finish	Train No.	Start	Train No.	Finish
 TANMORE SIDINGS				LONDON ROAD DEPOT ELEPHANT \& CASTLE $\left\|\begin{array}{lll}05 & 28 & \text { Pfin } \\ 05 & 36 & \text { Sdg } \\ 05 & 36 & 5 d z\end{array}\right\|$				CROXLEY GREEN DEPOT QUEENS PARK DEPOT 			

(d) Followed by night finishes

Train No.	Start	Train No.	Finish	Trin No.	Start	Train No.	Finish	Train No.	Start	Train No.	Finish
NEASDEN DEPOT STANMORE SIDINGS				London ro ad depot ELEPHANT \& CASTLE $\left.\right\|_{05} ^{05} 29 \mathrm{prm}$ 				CROXLEY GREEN DEPOT $\begin{gathered} 0710 \\ 007 \\ 07 \\ 07 \\ 07 \\ \hline 53 \end{gathered}$ QUEENS PARK DEPOT			
(e) And the last of the time entries; the evening finishes											
		DEPO E SIDIN		LON	On R	CAST	T 231488 00268 20 			K DEP	OT ${ }_{\text {OT }}$

(f) Finally (at a later stage) train numbers will complete the Depot Working

Train \& Crew Numbers

TRAIN NUMBERS

On Underground lines, each train is given an identification number which it retains throughout the day. This applies even if a train is stabled and restarts later the same day but there is, of course, no continuity overnight. The Compiler is responsible for nominating these numbers which are at the top of each column in the timetable. Each line is allocated a block of train numbers which column in the timetable, Each line is allocated a block of train numbers which digits 8 and g in a train number is forbidden on most lines because the 'automatic' point and signal control installed on some lines is incapable of handling these digits. Thus a block of numbers allocated to a line would, for example, look like this:-

1 to 7, 10 to 17, 20 to 27, 30 to 37 and 40 to 47. This block provides for a maximum of 39 train numbers.

The application of these numbers to the timetable conforms to one of two distinct methods:-
METHOD 1 - is used on lines where the off-peak pattern provides for trains on each route to follow one another around in order. The method is known as sequential numbering; a group of numbers will be used on each route and will be related to the standard which operates for the greater part of the daytime service. Thus, during this period the trains will follow each other in numerical order. When numbering up his timetable, the Compiler will commence at a point where the service is running on the selected standard and, taking each train in turn, number backwards to the start of the train, then forwards to the finish

METHOD 2 - is adopted when the first method is unsuitable. Each stabling point is allocated a group of numbers and these are applied to trains in starting time order. In this case a Compiler will take each stabling location in turn and number each train forward from the start.

When you have numbered up a timetable be sure to check that every train trip has been given a number.

CREU RUNNING NUMBERS
On lines where stepping back occurs, another set of numbers is used - known as crew running numbers. These are in a completely different range from the train numbers and, because these numbers are not identified by any signalling equipment, the 8 and 9 restriction does not apply. Crew numbers are applied to the timetable in exactly the same way as train numbers except that when a train arrives at a terminal where stepping-back is occurring, the number follows the crew and is stepped back to the next train to reverse at that platform.

Because an additional crew is used at a platform where stepping-back takes place, it follows that an additional crew number will also be needed. This number will be applied to the first departure to be involved in the stepping-back process.
Note that with the usual 2 platform terminal, 2 stepping back crews are used thus two additional crew running numbers are required - appled to the first two departures involved in stepping-back (one from each platform). The following illustration may help to clarify the process.

An illustration of Stepping-Back at a 2 platform terminal:

Train No.	3	12	17	4	21	22	26
Crew Running No.	101	103	114	121	102	117	108
terminal arrive	0800	0803	0806	$0808 \frac{1}{2}$	08 11	$0813 \frac{1}{2}$	0816
Platform No.	1	2	1	2	1	2	1
			∇	∇	∇	∇	∇
Train No.	3	12	17	4	21	22	26
Crew Running No.	101	103	141	142	114	121	102
Platform No.	1	2	1	2	1	2	1
terminal depart	0804	$08 \quad 07$	$0809 \frac{1}{2}$	0812	$0814 \frac{1}{2}$	0817	$08 \quad 19 \frac{1}{2}$

In this case, stepping-back starts with train 17 at platform 1 and train 4 at platform 2. Note the allocation of new crew running numbers (141 and 142) for the teparture of these two trains

The Finishing Touches Timetable Related Items

At this stage the timetable is essentially complete but there are a number of additional jobs to be done which are associated with the timetable. One of these - the Depot Working was explained in in Chapter IV and should by now, be completed. Here is a brief look at the remainder.
rolling stock working
This is a list, in train number order, showing where and at what time each train starts and stables during the course of the day. It shows the same information as the Depot Vorking but arranged in a different way. Many compilers will prepare this document in parallel with their numbering of the timetable.

Maximum rolling stack required for service
This is a small tabulation which shows the maximum number of trains and cars which the rolling stock staff are required to provide for the service from each stabling point.

Examples of the above two tables are illustrated overleaf and, together with the Depot working are included in the front pages of the timetable when it is published.
train running schedules
These are known colloquially as 'boards'.
A Train Running Schedule is written after the timetable is completed, for each train shown in that timetable. It follows the course of the train, trip by trip, throughout the day. An example of train boards for the Northern Line is shown
overleaf.

Boards are used by the Duty Sheet officer to assist them in compiling the crew duty sheets, and by the Railway Mileage Office in the calculation of scheduled train miles. For the Compiler, writing them is a rather boring clerical operation - but they are very important to the offices which use theme. Thus their accuracy is as important as in the timetable itself.

On lines where stepping-back of crews occurs, it is necessary to prepare anothe set of boards - known as Creu Boards. These are exactly the same as train boards except that they follow the crews (more accurately - the crew running numbers) through the timetable.

EXAMples of a rolling stock working and a maximum rolling stack required for service

ROLLING STOCK WORKING							
Train No.	Start Mornins		Finish Morning	Start Atternoon	Finish Evening	Finish Night	
							$\begin{aligned} & 0013 \\ & 2025 \\ & 08 \\ & 00 \\ & 08 \\ & 00 \end{aligned}$
	st st					$\xrightarrow{\mathrm{M}}(\mathrm{K})$ st a(22)	${ }_{00} 925$ 2325 0034
144 142 143 143 146 146				$\underset{\substack{(5) \\ \mathbf{a}(5)}}{ }{ }^{16316}$	$\begin{array}{ll} \text { cG } & 1836 \\ & \\ \text { st } & 1929 \end{array}$		
${ }_{\text {c }}^{151}$	(ect		N(N) $\begin{gathered}\text { N } \\ \text { N }\end{gathered}$	$\cdots(N)$		st	0033
$\begin{aligned} & 185 \\ & \hline 150 \\ & \hline 150 \\ & \hline 160 \end{aligned}$	$\begin{aligned} & \hline 6.6 \\ & \substack{66 \\ c 6 \\ \hline 6 \\ \hline} \\ & \hline \end{aligned}$			N(5) $=$		0 (21)	0052
			$\begin{aligned} & \mathrm{N}(\mathrm{~N})=1026 \\ & \mathrm{Z} \\ & \mathrm{~N}(\mathrm{~N}) \\ & = \\ & \hline \end{aligned}$	$\begin{aligned} & N(N)=1513 \\ & \text { = } \\ & N(N)=1543 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { シ } \\ & \bar{Z} \end{aligned}$		
Depot	$\begin{aligned} & 10 \\ & 6 \\ & \frac{6}{3} \\ & \frac{3}{7} \end{aligned}$		$\frac{\frac{10}{2}}{\frac{1}{3}}$	$\frac{10}{\frac{10}{1}}$	$\begin{aligned} & \frac{4}{6} \\ & \frac{3}{4} \end{aligned}$	$\begin{array}{r}6 \\ \begin{array}{l}3 \\ 3\end{array}{ }^{1} \times \\ \hline\end{array}$	
TOTAL	39		13	13	${ }^{18}$	21	
trand in semilice	39						

MAXIMUM NUMBER OF TRAINS AND CARS REQUIRED FOR SERVICE

DEPOT				No. of Trains	No. of Cars
Neasden De	\ldots		.	10	70
Stanmore Si		9	63
London Roa	\ldots	6	42
Elephant \&	...	\ldots	\cdots	3	21
Croxley Gr	4	28
Queens Park	\ldots	7	49
Total	39	273

train running schedule - Northern line

Conclusion

I implied at the very beginning that no book, paper or whatever, could ever claim
to be a 'reach Yourself Schedule Compiling'. Indeed, I neuer intended that this rather extended set of notes should include anything more than the most basic of background information.

More knowledgeable readers will be aware that many subjects have been omitted altogether but I have tried to include most of what a new Compiles is likely to encounter during their first few weeks of training. Beyond this stage the variations from a standard course - both in line peculiarities and in different methods used by experienced Compilers become numerous. I do not propose to take that path.

Finally, if you have read this far - well done and thank you.

